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Chapter 1

Mathematical/Empirical
Modelling

1.1 Introduction

Ionospheric models are essential in describing the spatial and temporal variations of electron density
and related parameters in the ionosphere. These models are crucial for applications such as radio
communication, satellite navigation (GNSS/GPS), and space weather predictions. Most widely
used models include Klobuchar, IRI (International Reference Ionosphere), and NeQuick, each with
unique characteristics, accuracy, and inputs.

1.2 Klobuchar Model

• Type: Empirical, single-layer

• Purpose: Developed for real-time, on-board correction of ionospheric delay in single-frequency
GPS receivers.

• Approach:

– Assumes all free electrons are concentrated in a thin shell at ∼ 350 km altitude.

– Utilises a simple cosine function to model daily variation, with a fixed offset for nighttime.

– Relies on 8 coefficients broadcast in GPS navigation messages.

• Performance: Reduces approximately 50% of the root mean square (RMS) ionospheric error
in GPS, but is limited in high-disturbance or equatorial regions.

• Advantages: Simple, computationally efficient, requires minimal input.

• Limitations: Lower accuracy, especially during high ionospheric activity or outside mid-
latitudes; accuracy can change significantly at night[1][2][3][4].
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Figure 1.1: Klobuchar Model

1.3 International Reference Ionosphere (IRI)

• Type: Data-driven empirical standard model (global)

• Purpose: Provides a comprehensive, climatological description of the ionosphere for research
and operational use.

• Approach:

– Based on large datasets from ionosondes, satellites, rockets, and radars collected over
decades.

– Outputs include monthly averages of electron density, temperature, ion composition, and
total electron content (TEC) as functions of location, altitude, time, and solar/magnetic
activity.

– Regularly updated by international collaborations.

• Performance: Considered the standard benchmark for upper atmosphere studies; widely
used for both specification and forecasting.

• Advantages: High accuracy, especially where data coverage is dense; models a wide range
of parameters and phenomena (including F2-layer, equatorial anomaly, ion drift, etc.).

• Limitations: Cannot capture short-term or rapid variations; best for average conditions
rather than real-time corrections[5][6][7][8].

1.4 NeQuick Model

• Type: Empirical, quick-run “profiler” model; suitable for global applications.

• Purpose: Designed for fast computation of electron density and TEC, mainly for trans-
ionospheric applications (e.g., GNSS/GPS corrections; adopted by the Galileo system).
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• Approach:

– Uses a sum of semi-Epstein layers fitted to ionosonde anchor points (E, F1, F2 peaks).

– Electron density profiles depend on location, time, and solar activity (inputs: position,
time, solar flux).

– Models both the “bottomside” (below F2 peak) and “topside” of the ionosphere.

• Performance: More accurate than Klobuchar, especially during high or variable ionospheric
activity; mitigates up to 70% of the ionospheric delay—outperforms Klobuchar in both quiet
and disturbed conditions.

• Advantages: Fast, provides vertical and slant TEC, suitable for single- and multi-frequency
GNSS, adaptable for real-time corrections.

• Limitations: Slightly more complex than Klobuchar; still empirical, so limited by the quality
of the input data[9][10][11][12][13].

1.5 Comparison Table

Model Type Main Use Inputs Outputs Typical
Accuracy

Advantages Limitations

Klobuchar Empirical GPS single-
frequency

8 coef-
ficients
(from GPS)

Iono. delay 50% RMS
error cor-
rection

Simple,
fast, broad-
cast in
GPS

Lower ac-
curacy,
fixed at
night

IRI Empirical Research,
specifica-
tion

Solar/geo
indices,
time, loca-
tion

Electron
density,
TEC

High (cli-
matologi-
cal)

Comprehensive;
benchmark
model

Averages
only, not
for real-
time

NeQuick Empirical GNSS,
Galileo,
research

Solar flux,
time, loca-
tion

Electron
density,
TEC

55–74% er-
ror mitiga-
tion (better
during ac-
tivity)

Fast, more
accu-
rate than
Klobuchar

More
complex,
input data-
dependent

1.6 Key Differences

• Accuracy: NeQuick and IRI offer higher accuracy than Klobuchar, with NeQuick outper-
forming Klobuchar for real-time GNSS corrections, particularly during periods of high iono-
spheric activity[10][4][13].

• Purpose: Klobuchar prioritizes computational simplicity for GPS; IRI prioritizes compre-
hensive climatological mapping; NeQuick balances fast computation with improved accuracy
for navigation.

3

https://docs.google.com/document/d/1p89QPYdVfAovXdh7CzBbCtHO3tdWBnwPaEgjkEk6blY/edit#bookmark=id.8ibqjpsk4wvo
https://docs.google.com/document/d/1p89QPYdVfAovXdh7CzBbCtHO3tdWBnwPaEgjkEk6blY/edit#bookmark=id.54zjvqze1hb
https://docs.google.com/document/d/1p89QPYdVfAovXdh7CzBbCtHO3tdWBnwPaEgjkEk6blY/edit#bookmark=id.f7ahx1ra0auc
https://docs.google.com/document/d/1p89QPYdVfAovXdh7CzBbCtHO3tdWBnwPaEgjkEk6blY/edit#bookmark=id.hlhar5ejf41a
https://docs.google.com/document/d/1p89QPYdVfAovXdh7CzBbCtHO3tdWBnwPaEgjkEk6blY/edit#bookmark=id.k3c7ei5uspyc
https://docs.google.com/document/d/1p89QPYdVfAovXdh7CzBbCtHO3tdWBnwPaEgjkEk6blY/edit#bookmark=id.54zjvqze1hb
https://docs.google.com/document/d/1p89QPYdVfAovXdh7CzBbCtHO3tdWBnwPaEgjkEk6blY/edit#bookmark=id.8zm7s4njwbpu
https://docs.google.com/document/d/1p89QPYdVfAovXdh7CzBbCtHO3tdWBnwPaEgjkEk6blY/edit#bookmark=id.k3c7ei5uspyc


• Inputs & Outputs: Klobuchar needs minimal broadcast data; NeQuick and IRI require
more geophysical inputs and output a wider range of parameters.

• Complexity: Klobuchar is simplest, suitable for real-time GPS applications with limited
onboard computation. NeQuick is somewhat more complex, but still fast; IRI is most com-
prehensive and suited for research or post-processing.

1.7 Summary

• Klobuchar: Standard for GPS, simple, but lower accuracy, mainly corrects average iono-
spheric delay.

• IRI: Empirical global standard, high detail and accuracy for research and climatology, not
for real-time navigation.

• NeQuick: Fast, accurate for GNSS corrections, especially adopted by Galileo; provides sig-
nificant improvement over Klobuchar for ionospheric delay correction in single-frequency ap-
plications.

These models, while serving overlapping purposes, are often chosen based on application require-
ments—simplicity for real-time corrections (Klobuchar), robust climatology (IRI), or a combination
of speed and enhanced accuracy (NeQuick)[9][10][7][4][13][14].
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Chapter 2

Machine Learning Ionospheric
Models

Machine learning (ML) models are increasingly used in ionospheric modeling to predict and char-
acterize parameters such as Total Electron Content (TEC), foF2, and other ionospheric variables.
These models can capture complex temporal and spatial patterns, adapt to rapidly changing con-
ditions, and often outperform traditional empirical or climatological approaches, especially during
atypical or disturbed conditions[1][2][3].

2.1 General Approach

• Type: Data-driven, often nonlinear regressions (neural networks, ensemble models, etc.).

• Purpose: Predict ionospheric parameters more accurately by learning from historical, multi-
source data.

• Techniques:

– Neural Networks (e.g., MLP, LSTM, Transformers, CNN)

– Ensemble Methods (Random Forests, Gradient Boosting)

– Hybrid approaches integrating physics-based model outputs and observational data.

• Inputs: Historical observations (e.g., TEC, foF2), solar/geomagnetic activity indices (F10.7,
Kp, Ap, Dst), time and location data, GNSS measurements, and, in some cases, outputs from
empirical models.

• Outputs: Predicted values of electron density-related parameters (TEC, foF2, hmF2, etc.)
at specific times and locations.

2.2 Example Machine Learning Models

• LSTM and Deep Neural Networks: Capture temporal dependencies for tasks like TEC
forecasting, especially effective during geomagnetic storms or periods of high variability[2][3].
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• Random Forest and Gradient Boosting Regression: Known for robust performance
in predicting multiple ionospheric parameters and reconstructing missing datasets, showing
lower error and higher explained variance than linear models[4][5].

• Transformer Networks: Applied for multi-parameter forecasting (e.g., TEC, foF2), offering
reliable spatial and temporal generalisation and quantification of uncertainty[6].

• Hybrid/Model-augmented Approaches: Combine outputs from empirical/physics-based
models (like IRI, SAMI3) with ML models for enhanced forecasting under both typical and
disturbed conditions[7][8][9].

2.3 Performance & Characteristics

• Accuracy: ML models consistently outperform traditional empirical models (Klobuchar,
NeQuick, IRI) in dynamic or disturbed ionospheric conditions; root mean square errors
(RMSE) are lower and variance explained is higher[1][2][8][5].

• Adaptability: Ability to learn from changing data streams enables rapid adaptation to non-
average or storm-time scenarios, providing more sensitive and robust characterizations of the
ionosphere[1][2].

• Spatial & Temporal Resolution: Can generate high-resolution forecasts (both spatial and
temporal), provided sufficient training data.

• Limitations: Require substantial quality data for training, performance can degrade if ex-
trapolated far outside the domain of the training data, and may lack interpretability compared
to physics-based models.

2.4 Key Differences vs. Empirical Models

• Data-driven Nature: ML models ”learn” from historical and real-time datasets, rather
than relying exclusively on averages or parameterizations.

• Performance During Disturbances: They excel at predicting atypical or storm-time
ionospheric behavior, whereas empirical models tend to lag or underperform in these sce-
narios[1][2][9].

• Inputs and Outputs: ML models can ingest a larger variety of data types (including satel-
lite, ground-based, and model-derived data) and can predict multiple parameters at finer
scales.

• Computational Demand: Often higher than for simple empirical models, but increasingly
manageable with modern hardware.

• Interpretability: While empirical models are based on physical simplifications, ML models
may lack transparency in the learned relationships.
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Model
Type

Main Tech-
niques

Inputs Outputs Strengths Limitations

Neural
Networks
(DNN,
LSTM)

Deep learning
(MLP, LSTM,
CNN)

Time series of
TEC, geomag-
netic indices,
etc.

TEC, foF2,
etc.

Captures non-
linearities and
temporal depen-
dencies

Needs large train-
ing sets

Ensemble
(RF,
GBM,
SVM)

Random Forest,
Gradient Boost-
ing

Observations +
indices, hybrid
with models

Multiple
iono. param-
eters

High accuracy,
deals with miss-
ing/noisy data

Can overfit, less
capable for long
sequences

Hybrid/
Model
Aug-
mented

ML + Empir-
ical/Physics
model

Model outputs
+ observations

All key pa-
rameters

Merges physical
insight with data
adaptability

Complexity; inte-
gration challenges

Transformer
Networks

Deep sequence
modeling

Multi-variate
time series +
exogenous vars

TEC, foF2,
uncertainty

Superior sequence
modeling, can
generalize well

Very data-hungry
and computa-
tional

2.5 Comparison Table

2.6 Summary

• Machine Learning models provide robust, high-accuracy forecasting and recon-
struction of ionospheric parameters, particularly under variable and disturbed
conditions[2][8][4].

• Their application ranges from short-term TEC prediction to filling observational
data gaps and hybrid modelling with physics-based models[3][7][9].

• As data availability and model sophistication increase, ML is poised to play an
even larger role in space weather applications and navigation system integrity.
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Chapter 3

Difference Between Empirical and
Machine Learning Based
Ionospheric Models

3.1 Empirical Models

• Definition: Use physics-based or statistically fitted equations derived from historical observa-
tions or theoretical understanding of the ionosphere.

• Examples: Klobuchar, IRI (International Reference Ionosphere), NeQuick.

• Inputs: Typically require a limited set of geophysical parameters (e.g., solar flux, time, loca-
tion) or coefficients broadcast via GNSS systems.

• Outputs: Provide averaged or climatological values for ionospheric parameters such as electron
density, Total Electron Content (TEC), or critical frequencies.

• Strengths:

– Well-validated over long-term datasets.

– Simple, computationally efficient, and reliable for average conditions.

– Easy to interpret—the influence of each variable is often explicit.

• Limitations:

– Limited ability to adapt to rapidly changing or disturbed conditions.

– May underperform during atypical events (e.g., geomagnetic storms).

– Less effective for localized, short-term ionospheric variations.
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3.2 Machine Learning Based Models

• Definition: Rely on data-driven algorithms (like neural networks or ensemble methods) trained
on large sets of historical and real-time measurements, rather than explicit theoretical or
statistical formulations.

• Examples: Neural Networks (MLP, LSTM, Transformers), Random Forests, hybrid models.

• Inputs: Leverage diverse data sources, including ground and satellite measurements, geomag-
netic/solar indices, prior empirical/physics model output, and more.

• Outputs: Generate predictions of ionospheric parameters, often at finer spatial and temporal
resolutions, and can handle uncertainty quantification.

• Strengths:

– Capture nonlinear, complex relationships not easily modelled analytically.

– Adapt dynamically to unusual or disturbed ionospheric states.

– Can integrate and learn from vast, heterogeneous datasets for improved precision.

• Limitations:

– Require significant, high-quality labelled data for training.

– Computationally more demanding, especially during model training.

– Often less interpretable—the influence of input variables may be opaque.

3.3 Summary Table

Aspect Empirical Models Machine Learning Models
Basis Physics/statistics, established equations Data-driven, learns from data
Inputs Limited, predefined Wide, diverse, multi-source
Outputs Average parameters, simple predictions Fine-scale, dynamic predictions

Adaptability Low during unusual events High, can adapt to new data
Complexity Simple to moderate Moderate to high

Interpretability High (transparent) Lower (black-box nature)
Data Needs Modest Large, high-quality datasets
Use Cases Standard navigation, climatology Real-time forecasting, anomaly detection

3.4 Key Differences

• Approach: Empirical models use established theories and averages; ML models extract pat-
terns directly from data.

• Performance: ML models generally outperform empirical models during periods of high iono-
spheric variability or disturbance.
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• Practicality: Empirical models are preferable for applications requiring simplicity and minimal
computation; ML models excel when accuracy and adaptability to new data are critical.
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